无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2007美国US F=MA物理竞赛 (id: db3e26ef0)

[复制链接]
admin 发表于 3 天前 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2007美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
A massless elastic cord (that o: pzf d /h1c1rrq(d,giy-j6 d ijo ;57wx*uvvobeys Hooke's Law) will break if the tension in the cord uowvxv*57 i j;exceeds $T_{max}$. One end of the cord is attached to a fixed point, the other is attached to an object of mass 3m. If a second, smaller object of mass $m$ moving at an initial speed $v_{0}$ strikes the larger mass and the two stick together, the cord will stretch and break, but the final kinetic energy of the two masses will be zero. If instead the two collide with a perfectly elastic one-dimensional collision, the cord will still break, and the larger mass will move off with a final speed of $v_{f}$. All motion occurs on a horizontal, frictionless surface. Find $v_{f}/v_{0}$


A. $1/\sqrt{12}$
B. $1/\sqrt{2}$
C. $1/\sqrt{6}$
D. $1/\sqrt{3}$
E. none of the above


参考答案:  C


本题详细解析:
We must first determine th(ycz1cl4 ghqp)y:sc 3 e breaking energy of the cord from the inelastic case. 1. **Inelastic Collisi:yc q1z4g hpys(c3 )clon:** Mass $m$ hits $3m$ and they stick. By conservation of momentum: $mv_0 = (m+3m)v^{\prime} \implies v^{\prime} = \frac{v_0}{4}$. The kinetic energy of the combined $4m$ mass right after collision is $K_1 = \frac{1}{2}(4m)(v^{\prime})^2 = \frac{1}{2}(4m)(\frac{v_0}{4})^2 = \frac{1}{2}(4m)\frac{v_0^2}{16} = \frac{mv_0^2}{8}$. The problem states this stretches the cord and the final KE is zero, meaning all of $K_1$ is converted into the cord's potential energy $U_0$ at breaking. So, $U_0 = \frac{mv_0^2}{8}$. 2. **Elastic Collision:** Mass $m$ hits $3m$ elastically. The velocity of the $3m$ mass ($m_2$) just after collision is $v_{3m} = \left( \frac{2m_1}{m_1+m_2} \right) v_0 = \left( \frac{2m}{m+3m} \right) v_0 = \left( \frac{2m}{4m} \right) v_0 = \frac{v_0}{2}$. The kinetic energy of the $3m$ mass just after collision is $K_2 = \frac{1}{2}(3m)(v_{3m})^2 = \frac{1}{2}(3m)(\frac{v_0}{2})^2 = \frac{3mv_0^2}{8}$. 3. **Cord Breaking (Elastic Case):** The $3m$ mass starts with $K_2$. It stretches the cord, which absorbs $U_0$ energy, and is left with a final kinetic energy $K_3 = \frac{1}{2}(3m)v_f^2$. By conservation of energy: $K_2 = U_0 + K_3$. $\frac{3mv_0^2}{8} = \frac{mv_0^2}{8} + K_3$ $K_3 = \frac{3mv_0^2}{8} - \frac{mv_0^2}{8} = \frac{2mv_0^2}{8} = \frac{mv_0^2}{4}$. 4. **Solve for $v_f$:** We set $K_3$ equal to its definition: $\frac{1}{2}(3m)v_f^2 = \frac{mv_0^2}{4}$ $\frac{3}{2}v_f^2 = \frac{v_0^2}{4}$ $v_f^2 = v_0^2 \left( \frac{2}{12} \right) = \frac{v_0^2}{6}$ $\frac{v_f}{v_0} = \sqrt{\frac{1}{6}} = \frac{1}{\sqrt{6}}$.

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2025-12-23 16:04 , Processed in 0.041248 second(s), 38 queries , Redis On.

搜索
快速回复 返回顶部 返回列表