无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2007美国US F=MA物理竞赛 (id: 0ad8c7dbf)

[复制链接]
admin 发表于 3 天前 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2007美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
If a planet of radius8 )yd((aidx9s+ gbmyw-mlwa )ja g3ge6r1*ws mbk cbg2stok94 1fo(1 $R$ spins with an angular velocity $\omega$ about an axis through the North Pole, what is the ratio of the normal force experienced by a person at the equator to that experienced by a person at the North Pole? Assume a constant gravitational field $g$ and that both people are stationary relative to the planet and are at sea level.

A. $g/(R\omega^2)$
B. $R\omega^2/g$
C. $1-R\omega^2/g$
D. $1+g/(R\omega^2)$
E. $1+R\omega^2/g$


参考答案:  C


本题详细解析:
Let the person's massgy/xk- x5t+tqg+ *rtb0yvy+ j be $m$. 1. At the North Pole: The person is on the axis of rotation, so they are not in circular motion ($v=0$). The net force is zero. The normal force $N_{pole}$ balances gravity $mg$. $N_{pole} - mg = 0 \implies N_{pole} = mg$. 2. At the Equator: The person is in uniform circular motion with radius $R$ and angular velocity $\omega$. The net force must provide the required centripetal force $F_c = m a_c = m R\omega^2$, directed towards the center (down). The forces are gravity ($mg$, down) and the normal force ($N_{eq}$, up). The net force is $F_{net} = mg - N_{eq}$. Set $F_{net} = F_c$: $mg - N_{eq} = mR\omega^2$. Solve for $N_{eq}$: $N_{eq} = mg - mR\omega^2$. 3. Find the ratio: $N_{eq} / N_{pole} = (mg - mR\omega^2) / (mg) = (mg/mg) - (mR\omega^2 / mg) = 1 - R\omega^2/g$.

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2025-12-23 16:04 , Processed in 0.035438 second(s), 39 queries , Redis On.

搜索
快速回复 返回顶部 返回列表