无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2007美国US F=MA物理竞赛 (id: 849c8dc08)

[复制链接]
admin 发表于 3 天前 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2007美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
Two rockets are in space in a negligible g8m wpbejwb h m45iz6,3gs0 5klrav xw6nc(cv1 ml(-z3vpeitational field. All observations are made by an observer in a reference frame ilzmp6v vx31c-w(en c(n which both rockets are initially at rest. The masses of the rockets are $m$ and $9m$. A constant force $F$ acts on the rocket of mass $m$ for a distance $d$. As a result, the rocket acquires a momentum $p$. If the same constant force $F$ acts on the rocket of mass $9m$ for the same distance $d$, how much momentum does the rocket of mass $9m$ acquire?

A. $p/9$
B. $p/3$
C. $p$
D. $3p$
E. $9p$


参考答案:  D


本题详细解析:
Use the Work-Energy Theorem. The work don,llsaur; :mj7e on both rockets is the same, $W = Fd$. The work done is equal to the change in kinetic energy, $W = \Delta K = K_f$ (since $K_i = 0$). Kinetic energy can be expressed in terms of momentum $p$ as $K = p^2 / (2m)$. Rocket 1 (mass $m$): $W = p_1^2 / (2m)$. We are given $p_1 = p$, so $W = p^2 / (2m)$. Rocket 2 (mass $9m$): $W = p_2^2 / (2(9m)) = p_2^2 / (18m)$. Since the work $W$ is the same for both: $p^2 / (2m) = p_2^2 / (18m)$ Divide both sides by $2m$: $p^2 = p_2^2 / 9$ $p_2^2 = 9p^2$ $p_2 = \sqrt{9p^2} = 3p$.

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2025-12-23 16:03 , Processed in 0.043005 second(s), 39 queries , Redis On.

搜索
快速回复 返回顶部 返回列表