无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2012美国US F=MA物理竞赛 (id: 1e5915940)

[复制链接]
admin 发表于 3 天前 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2012美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
Consider the two orbits around the sun sho*g. dtal*3if kbi y9ny9reo; ;wfsv(3j b7h: cvn below. Orbit P is circular with radius:h3(cb v vj7fs $R$, orbit Q is elliptical such that the farthest point $b$ is between $2R$ and $3R$, and the nearest point $a$ is between $R/3$ and $R/2$. Consider the magnitudes of the velocity of the circular orbit $v_{c}$, the velocity of the comet in the elliptical orbit at the farthest point $v_{b}$, and the velocity of the comet in the elliptical orbit at the nearest point $v_{a}$. Which of the following rankings is correct?


A. $v_{b} > v_{c} > 2v_{a}$
B. $2v_{c} > v_{b} > v_{a}$
C. $10v_{b} > v_{a} > v_{c}$
D. $v_{c} > v_{a} > 4v_{b}$
E. $2v_{a} > \sqrt{2}v_{b} > v_{c}$


参考答案:  C


本题详细解析:
1. **Compare $v_a$ and $v_c$**: The speed for a circular orbit is $v_{circ}(r) = \sqrt{GM/r}$. The speed at periapsis $v_a$ of an ellipse is *always* greater than the circular orbit speed at that same radius $r_a$. $v_a > v_{circ}(r_a)$. We are given $r_a < R$. Since $r_a < R$, $v_{circ}(r_a) = \sqrt{GM/r_a} > \sqrt{GM/R} = v_c$. Therefore, $v_a > v_{circ}(r_a) > v_c$, which means **$v_a > v_c$**. This eliminates options A, B, D, and E (since $v_b > v_c$ is false). 2. **Analyze Option C**: This option claims $10v_b > v_a > v_c$. We already proved $v_a > v_c$. 3. **Check $10v_b > v_a$**: By conservation of angular momentum: $m v_a r_a = m v_b r_b$, so $v_a / v_b = r_b / r_a$. We are given $R/3 < r_a < R/2$ and $2R < r_b < 3R$. Let's check the extremes for the ratio $r_b / r_a$: * Max ratio: $r_b = 3R$, $r_a = R/3$. Ratio = $3R / (R/3) = 9$. So $v_a = 9v_b$. * Min ratio: $r_b = 2R$, $r_a = R/2$. Ratio = $2R / (R/2) = 4$. So $v_a = 4v_b$. In all cases, $v_a$ is between $4v_b$ and $9v_b$. The inequality $10v_b > v_a$ is always true, since $10v_b > 9v_b \ge v_a$. Since both $10v_b > v_a$ and $v_a > v_c$ are correct, option C is the correct ranking.

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2025-12-23 16:04 , Processed in 0.040056 second(s), 39 queries , Redis On.

搜索
快速回复 返回顶部 返回列表