无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2012美国US F=MA物理竞赛 (id: 66dcda9b7)

[复制链接]
admin 发表于 3 天前 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2012美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
Three point masses $m$ are attached together by identical springs. When placed at rest on a horizontal surface the masses form a triangle with side length $l$. When the assembly is rotated about its center at angular velocity $\omega$, the masses form a triangle with side length $2l$. What is the spring constant $k$ of the springs?

A. $2m\omega^2$
B. $\frac{2}{\sqrt{3}}m\omega^{2}$
C. $\frac{2}{3}m\omega^{2}$
D. $\frac{1}{\sqrt{3}}m\omega^{2}$
E. $\frac{1}{3}m\omega^{2}$


参考答案:  C


本题详细解析:
Assume the spring's natt io,sw;;e*es qvs3 3yt3k so9ural length is $l_0 = l$. When rotating, the side length is $s = 2l$. The extension of each spring is $x = 2l - l_0 = l$. The force from each spring is $F_s = kx = kl$. Each mass $m$ is at a radius $r$ from the center of rotation. For an equilateral triangle of side $s$, the distance from center to vertex is $r = s / \sqrt{3}$. Here, $r = 2l / \sqrt{3}$. The centripetal force required is $F_c = m\omega^2 r = m\omega^2 (2l / \sqrt{3})$. This centripetal force is provided by the vector sum of the two spring forces acting on the mass. The angle between the two springs is $60^\circ$. The net force $F_{net}$ points radially inward and is $F_{net} = 2 F_s \cos(30^\circ) = 2 (kl) (\sqrt{3}/2) = kl\sqrt{3}$. Set $F_{net} = F_c$: $kl\sqrt{3} = m\omega^2 (2l / \sqrt{3})$ $k\sqrt{3} = 2m\omega^2 / \sqrt{3}$ $k (\sqrt{3} \cdot \sqrt{3}) = 2m\omega^2$ $3k = 2m\omega^2$ $k = \frac{2}{3}m\omega^{2}$

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2025-12-23 16:04 , Processed in 0.038576 second(s), 40 queries , Redis On.

搜索
快速回复 返回顶部 返回列表